• Презентация на тему медь. Металл медь Презентация по химии на тему медь

    29.01.2024

    Слайд 1

    Описание слайда:

    Слайд 2

    Описание слайда:

    Слайд 3

    Описание слайда:

    Слайд 4

    Описание слайда:

    Сейчас невозможно установить, когда Сейчас невозможно установить, когда человек впервые познакомился с медью. Во всяком случае, около 3000 лет до н. э. египтяне уже могли делать из неё проволоку. В природе медь встречается иногда в самородном состоянии, и это облегчило добычу древним мастерам. Они умели каменными инструментами выковывать из этого металла различные изделия. Позднее стали разрабатываться медные копи, которые были разбросаны по всей планете: и в Северной Америке на берегах Великих озёр, и в Азии на Синайском п-ове, и в Европе на территории теперешней Австрии, и на о-ве Кипр. По мнению специалистов, латинское наименование металла "купрум" произошло от названия этого острова. Привычное русскому уху имя металла - "медь", вероятно, пошло от старославянского "смида", что означало металл вообще.

    Слайд 5

    Описание слайда:

    Слайд 6

    Описание слайда:

    Слайд 7

    Описание слайда:

    Слайд 8

    Описание слайда:

    Слайд 9

    Описание слайда:

    Именно из бронзы отлиты воспетый Именно из бронзы отлиты воспетый А. С. Пушкиным "Медный всадник" в Санкт-Петербурге и памятник Минину и Пожарскому на Красной площади в Москве. Благодаря особым механическим свойствам и хорошим литейным качествам бронза - идеальный металл для отливки колоколов, обладающих громким и красивым звуком. Всем известен гигантский "Царь-колокол" в Московском Кремле весом почти 202 тонны, отлитый в 1733-1735 годах русскими мастерами И. Ф. и М. Ф. Матрониными. Из бронзы в старину делали также пушки; самая большая из них "Царь-пушка" (39,3т) предназначалась для обороны Московского Кремля и была отлита мастером А. Чоховым в 1586г.

    Слайд 10

    Описание слайда:

    Слайд 11

    Описание слайда:

    Слайд 12

    Описание слайда:

    И сейчас из бронзы отливают скульптуры, И сейчас из бронзы отливают скульптуры, изготавливают люстры, канделябры, подсвечники, а также детали различных механизмов (например, подшипники). Как и много веков назад, для получения бронзы медь и медный лом сплавляют с оловом. Только уже не в земляных, а в современных электрических печах. Чтобы при плавлении медь и олово не окислялись, а бронза отличалась особой прочностью, в шихту перед литьём добавляют соединения фосфора. Из-за дефицита олова и его высокой цены оловянная бронза постепенно вытесняется другими бронзами, гл. обр. алюминиевой. Алюминиевая бронза, содержащая до 11% Аl, обладает хорошими механическими свойствами, устойчива в морской воде и даже в разбавленной соляной кислоте. Этот очень прочный сплав идёт на изготовление трубопроводов, деталей паровых турбин и авиационных двигателей и др.Из алюминиевой бронзы в России чеканили "медные" монеты с 1926 по 1957гг.Из свинцовой бронзы делают подшипники для тепловозов, судовых двигателей, водяных турбин. Исключительно прочна и долговечна бериллиевая бронза, которая благодаря упругим свойствам служит материалом для пружин, практически не знающих усталости (выдерживают до 20 миллионов циклов нагрузки).

    Слайд 13

    Описание слайда:

    Слайд 14

    Описание слайда:

    Другие сплавы. Из других сплавов отметим монель-металл (50 - 70% меди,15 - 25% никеля и цинка с добавками свинца, олова и железа) раньше применялся для изготовления столовых приборов и украшений "под серебро". Благодаря своей высокой коррозийной стойкости и прочности, хорошей пластичности сейчас применяется в химической, судостроительной, медицинской, нефтяной, текстильной и др. отраслях промышленности. А вот константан, манганин, хромель и копель почти не изменяют своего сопротивления при значительных колебаниях температуры и поэтому верой и правдой служат в электротехнике для изготовления термопар – очень чувствительных приборов, измеряющих температуру. Также из хромеля и копеля изготавливаются компенсационные провода, реостаты, детали нагревательных устройств. Из мангонина изготовляют эталонные резисторы и элементы измерительных приборов.


    СТРОЕНИЕ.

    • Медь-элемент побочной подгруппы
    • Строение атома:

    12 С u 1 s 2 |2s 2 2p 6 |3s 2 3p 6 3d 10 |4s 1 |


    • Медь - один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения и малой температуры плавления.
    • Латинское название меди Cuprum произошло от названия острова Кипр.
    • Известно, что при возведении пирамиды Хеопса использовались медные инструменты.

    Пирамида Хеопса


    Нахождение в природе.

    Медь встречается в природе в основном в связанном виде и входит в состав следующих минералов: Cu 2 S(медный блеск) , CuFeS 2 (медный колчедан), (CuOH) 2 CO 3 (малахит) . Содержание в земной коре 0,0 1 процент.


    Нахождение в природе.

    • Нередко встречаются месторождения меди в осадочных породах - медистые песчаники и сланцы.
    • Содержание меди в руде составляет

    от 0,3 до 1,0 %.

    Медь в соединениях

    Самородный вид


    Физические свойства

    • Медь – металл светло-розового цвета, тягучий, вязкий, легко прокатывается. Температура плавления 1083 градуса по Цельсию. Отличный проводник электрического тока. Плотность 8,92. Медь обладает высокой тепло и электропроводностью, занимает второе место по электропроводности после серебра.

    Получение.

    • Процесс получения меди весьма сложный. Упрощенно процесс ее производства из медного блеска отразить можно так:

    Cu 2 S+3O 2 2Cu 2 O+2SO 2

    затем оксид меди вступает в реакцию оставшимся медным блеском – и получается медь.

    2 Cu 2 O+Cu 2 S 6Cu+SO 2


    Химические свойства.

    В сухом воздухе и при обычной температуре медь почти не изменяется. А при повышенной температуре медь может вступать в реакции как с простыми так и с сложными веществами.


    Взаимодействие с простыми веществами.

    • С кислородом

    2 Cu+O 2 2CuO оксид меди(2)

    • С серой

    Cu+S CuS сульфид меди (2)

    • С галогенами

    Cu+Cl 2 CuCl 2 хлорид железа (2)


    Взаимодействие со сложными веществами.

    Находясь в ряду напряжений левее водорода медь не вытесняет водород из разбавленных растворов соляной и серной кислот.

    • Взаимодействие с H 2 SO 4 (конц.)

    Cu+2H 2 SO 4 (конц.) CuSO 4 +SO 2 +2H 2 O

    • Взаимодействие с HNO 3 (разб.)

    3С u+8HNO 3 (разб.) 3Cu(NO 3) 2 +2NO 2 +4H 2 O

    • Взаимодействие с HNO 3 (конц.)

    Cu+4 HNO 3 (конц.) Cu(NO 3) 2 +2NO 2 +H 2 O


    Соединения меди.

    • CuSO 4 – сульфат меди (белый порошок).
    • CuSO 4 *5H 2 O – медный купорос (голубой порошок).
    • CuCl 2 *2H 2 O – хлорид меди (темно-зеленый кристалл).
    • Cu(NO 3) 2 *3H 2 O – нитрат меди (синие кристаллы).

    1. Оксид меди (2) получение:

    черный порошок, проявляет свойства основного оксида

    взаимодействует с кислотами:

    Cu+2HCl CuCl 2 +H 2 O

    2. Гидроксид Cu(OH) 2 получение:

    CuCl 2 +2NaOH 2NaCl+Cu(OH) 2

    проявляет свойства основания, взаимодействует с кислотами:

    Cu(OH) 2 +2HCl CuCl 2 +2H 2 O


    Применение.

    Чистая медь используется в электротехнической промышленности для изготовления электрических проводов, кабелей и в теплообменных аппаратах. Она входит в состав различных сплавов. Например, медный купорос необходим для борьбы с вредителями и болезнями растений. А гидроксидом меди определяют альдегидную группу в органических соединениях.


    Применение

    • Медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников.
    • Теплопроводимость меди позволяет применять её в различных теплоотводных устройствах: радиаторах охлаждения, к ондиционироввания и отопления.

    Медный кабель.

    Медный радиатор.


    • Медь широко используется для производства медных труб применяющихся для транспортировки жидкостей и газов
    • В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются бронза и латунь.
    • Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др.

    Медные трубы.

    • Медноникелевые сплавы, широко используются в судостроении.

    Сплавы меди.

    Метизы (Детали машин)


    Ювелирные сплавы

    • В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото - очень мягкий металл и нестойко к этим механическим воздействиям.

    Широко применяется медь в архитектуре. Кровли и фасады из тонкой листовой меди из-за автозатухания процесса коррозии медного листа служат безаварийно по 100-150 лет.

    Медная кровля.

    Медный фасад.

    Медные водосточные трубы.


    Биологическая роль

    • Медь - необходимый элемент для высших растений и животных.
    • После усваивания меди кишечником она транспортируется к печени с помощью альбумина.
    • Здоровому взрослому человеку необходимо поступление меди в количестве 0,9 мг в день. При недостатке меди снижается активность ферментных систем и замедляется белковый обмен, в результате замедляется и нарушается рост костных тканей.

    Продукты, богатые медью.


    Влияние на экологию

    • При открытом способе добычи меди, после её прекращения карьер становится источником токсичных веществ. Самое токсичное озеро в мире - Беркли Пит - образовалось в кратере медного рудника. Оно находится в Штате Монтана в США.

    в 1984 году

    в 2008 году


    Материал взят из:

    • Фотографии: Google
    • Текст: Википедия
    • http://ppt4web.ru/khimija

    Слайд 1

    Металлы.Медь.

    Слайд 2

    Положение меди в периодической системе химических элементов и строение атома.
    Медь-элемент побочной подгруппы I группы (IБ-группы)

    Слайд 3

    Нахождение в природе.
    Медь встречается в природе в основном в связанном виде и входит в состав следующих минералов: медный блеск Cu2S и малахит CuCO3·Cu(ОН)2

    Слайд 4

    Нахождение в природе.
    Куприт Cu2O
    Медный колчедан CuFeS2

    Слайд 5

    Получение меди.
    Процесс получения меди весьма сложный. Наиболее пригодны для этого оксиды. С помощью кокса и оксида углерода (II) в цветной металлургии получают медь из куприта Cu2O.

    Слайд 6

    Физические свойства.
    Медь - золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

    Слайд 7

    Температура плавления 1083 ºС. Отличный проводник электрического тока (уступает только серебру).

    Слайд 8

    Химические свойства.
    Взаимодействие с неметаллами С кислородом в зависимости от температуры взаимодействия медь образует два оксида:при 400–500°С образуется оксид двухвалентной меди: 2Cu + O2 = 2CuO; при температуре выше 1000°С получается оксид меди (I): 4Cu + O2 = 2Cu2O.

    Слайд 9

    При нагревании с фтором, хлором, бромом образуются галогениды меди (II): Cu + Br2 = CuBr2; с йодом – образуется йодид меди (I): 2Cu + I2 = 2CuI. Медь не реагирует с водородом, азотом, углеродом и кремнием.

    Слайд 10

    Взаимодействие с кислотами.
    В электрохимическом ряду напряжений металлов медь расположена после водорода, поэтому она не взаимодействует с растворами разбавленной соляной и серной кислот и щелочей.

    Слайд 11

    Растворяется в разбавленной азотной кислоте с образованием нитрата меди (II) и оксида азота (II): 3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + 4H2O. Реагирует с концентрированными растворами серной и азотной кислот с образованием солей меди (II) и продуктов восстановления кислот: Cu + 2H2SO4 = CuSO4 + SO2 + 2H2O; Cu + 4HNO3 = Cu(NO3)2 + 2NO2 + 2H2O. С концентрированной соляной кислотой медь реагирует с образованием трихлорокупрата (II) водорода: Cu + 3HCl = H + H2.

    Слайд 12

    Восстановительные свойства.
    Медь окисляется оксидом азота (IV) и хлоридом железа (III): 2Cu + NO2 = Cu2O + NO; Cu + 2FeCl3 = CuCl2 + 2FeCl2.

    Слайд 13

    Применение.
    Чистая медь (99.9% Cu) используется в электротехнической промышленности для изготовления электрических проводов, кабелей и в теплообменных аппаратах.

    Слайд 14

    Медная проволока широко используется в электротехнике и электроэнергетике, в телекоммуникационной отрасли, судо- и автомобилестроении, ее применяют для производства электрокабеля, проводов, обмоток, выводов искрового зажигания, плавких предохранительных устройств

    Слайд 15

    В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Например, в состав так называемого пушечного металла, который в XVI-XVIII вв. действительно использовался для изготовления артиллерийских орудий, входят все три основных металла - медь, олово, цинк.В наше время находит применение в военном деле в кумулятивных боеприпасах благодаря высокой пластичности, большое количество латуни идёт на изготовление оружейных гильз. Медноникелевые сплавы используются для чеканки разменной монеты. Медноникелиевые сплавы, в том числе т. н. «адмиралтейский» сплав широко используются в судостроении и областях применения, связанных с возможностью агрессивного воздействия морской воды из-за образцовой коррозионной устойчивости.


    Введение. Так уж случилось, что в одной подгруппе оказались медь, серебро и золото: элементы- ровесники цивилизации. Все они в разное время выступали в качестве конечного мерила ценностей, проще говоря, денег. Из этих металлов ковали оружие, делали домашнюю утварь и украшения. В наши дни медь, серебро и золото- в самой гуще технического прогресса. Физик подчеркнёт их непревзойдённую тепло и электропроводность. Ваятель отметит пластичность и красивый внешний вид. Его поддержат ювелир и чеканщик, а химик непременно вспомнит о благородной инертности и высокой коррозионной стойкости этих металлов.


    История меди. Медь известна с незапамятных времён и входит в «великолепную семёрку» древнейших металлов, используемых человечеством, -это золото, серебро, медь, железо, олово, свинец и ртуть. По археологическим данным, медь была известна людям уже 600 лет назад. Она оказалась первым металлом, заменившим древнему человеку камень в первобытных орудиях труда. Это было начало т. наз. медного века, который длился около 2000 лет. Из меди выковывали, а потом и выплавляли топоры, ножи, булавы, предметы домашнего обихода. По преданию, античный бог-кузнец Гефест выковал для непобедимого Ахилла щит из чистой меди. Камни для 147-метровой пирамиды Хеопса.


    Сейчас невозможно установить, когда Сейчас невозможно установить, когда человек впервые познакомился с медью. Во всяком случае, около 3000 лет до н. э. египтяне уже могли делать из неё проволоку. В природе медь встречается иногда в самородном состоянии, и это облегчило добычу древним мастерам. Они умели каменными инструментами выковывать из этого металла различные изделия. Позднее стали разрабатываться медные копи, которые были разбросаны по всей планете: и в Северной Америке на берегах Великих озёр, и в Азии на Синайском п-ове, и в Европе на территории теперешней Австрии, и на о-ве Кипр. По мнению специалистов, латинское наименование металла "купрум" произошло от названия этого острова. Привычное русскому уху имя металла - "медь", вероятно, пошло от старославянского "смида", что означало металл вообще.


    Применение меди. Медь издавна применялась в строительстве: древние египтяне строили медные водопроводы; крыши средневековых замков и церквей покрывали листовой медью, например знаменитый королевский замок в Эльсиноре (Дания) покрыт кровельной медью. Из меди изготовляли монеты и украшения. Благодаря малому электрическому сопротивлению медь является главным металлом электротехники: больше половины всей получаемой меди идёт на производство электрических проводов для высоковольтных передач и слаботочных кабелей. Даже ничтожные примеси в меди приводят к повышению её электрического сопротивления и большим потерям электроэнергии. Медной жестью обшивают корпуса кораблей. Высокая теплопроводность и сопротивление коррозии позволяют изготовлять из меди детали теплообменников, холодильников, вакуумных аппаратов, трубопроводов для перекачки масел и топлив и пр. Широко используется медь и в гальванотехнике при нанесении защитных покрытий на стальные изделия. Так, например, при никелировании или хромировании стальных предметов на них предварительно осаждают медь; в этом случае защитное покрытие служит дольше и эффективней. Медь используют также в гальванопластике (т. е. при тиражировании изделий методом получения их зеркального отображения), например при изготовлении металлических матриц для печатания денежных купюр, воспроизведение скульптурных изделий.


    Изделия из бронзы были в ходу Изделия из бронзы были в ходу у древних египтян, ассирийцев, этрусков. Прекрасные бронзовые статуи отливали в Греции и Риме; многие из них сохранились до настоящего времени, например знаменитая конная статуя Марка Аврелия в Риме или одно из семи чудес света Колосс Родосский. Для скульптурных произведений, стоящих на открытом воздухе, особенно в местах с влажным климатом, бронза предпочтительна потому, что со временем на её поверхности появляется плотный зеленовато-коричневый налёт- патина, которая защищает металл от дальнейшего окисления. Также бронзой оковывали щиты римских легионеров.


    Именно из бронзы отлиты воспетый Именно из бронзы отлиты воспетый А. С. Пушкиным "Медный всадник" в Санкт-Петербурге и памятник Минину и Пожарскому на Красной площади в Москве. Благодаря особым механическим свойствам и хорошим литейным качествам бронза - идеальный металл для отливки колоколов, обладающих громким и красивым звуком. Всем известен гигантский "Царь-колокол" в Московском Кремле весом почти 202 тонны, отлитый в 1733-1735 годах русскими мастерами И. Ф. и М. Ф. Матрониными. Из бронзы в старину делали также пушки; самая большая из них "Царь-пушка" (39,3т) предназначалась для обороны Московского Кремля и была отлита мастером А. Чоховым в 1586г.


    Царь-пушка. Мастер Андрей Чохов. 1586 год. Памятник мещанину Кузьме Минину и князю Дмитрию Пожарскому создан по проекту художника И. П. Мартоса и отлит из бронзы литейным мастером Академии Художеств В. П. Екимовым, открыт 20 февраля 1818.


    И сейчас из бронзы отливают скульптуры, И сейчас из бронзы отливают скульптуры, изготавливают люстры, канделябры, подсвечники, а также детали различных механизмов (например, подшипники). Как и много веков назад, для получения бронзы медь и медный лом сплавляют с оловом. Только уже не в земляных, а в современных электрических печах. Чтобы при плавлении медь и олово не окислялись, а бронза отличалась особой прочностью, в шихту перед литьём добавляют соединения фосфора. Из-за дефицита олова и его высокой цены оловянная бронза постепенно вытесняется другими бронзами, гл. обр. алюминиевой. Алюминиевая бронза, содержащая до 11% Аl, обладает хорошими механическими свойствами, устойчива в морской воде и даже в разбавленной соляной кислоте. Этот очень прочный сплав идёт на изготовление трубопроводов, деталей паровых турбин и авиационных двигателей и др.Из алюминиевой бронзы в России чеканили "медные" монеты с 1926 по 1957гг.Из свинцовой бронзы делают подшипники для тепловозов, судовых двигателей, водяных турбин. Исключительно прочна и долговечна бериллиевая бронза, которая благодаря упругим свойствам служит материалом для пружин, практически не знающих усталости (выдерживают до 20 миллионов циклов нагрузки).


    Латунь. Латунь- это сплав меди с цинком. Хотя цинк был открыт только в средние века, латунь была известна ещё древним римлянам, которые получали её плавкой медных руд с цинковыми без доступа воздуха. Для придания латуни нужных свойств в её состав в её состав часто вводят в небольших количествах такие легирующие металлы, как Al, Mn, Ni, Fe и др. Латунь плавится легче, чем медь, но она твёрже её. Латунь хорошо куётся, прокалывается в листы, штампуется, вытягивается в проволоку и отлично полируется(до зеркального блеска). Изделия из неё поддаются закалке. При необходимости латунь можно наносить на поверхность других металлов электрохимическим методом. Немаловажно, что латунь значительно дешевле меди. Используют латунь в машиностроении и электротехнике; из неё делают детали различных механизмов, водопроводные и газовые краны, радиаторные трубы, дверные ручки, петли патронные гильзы. Латунь с добавкой алюминия по внешнему виду похожа на золото, из неё изготовляют значки, эмблемы, медали. Если цинка в сплаве относительно мало (до 18%), латуни имеют красноватый оттенок.Например, латунь с содержанием до 10% цинка называется томпаком; из этого сплава с 1961 по 1991 в России чеканили «медные» монеты, достоинством от 1 до 5 копеек. Сплавы с большим содержанием цинка (до 50%) - жёлтого цвета и называются собственно латунями. Они прекрасно обрабатываются вальцеванием, прессованием и протяжкой, из них получают добротные отливки.


    Другие сплавы. Из других сплавов отметим монель-металл (50 - 70% меди,15 - 25% никеля и цинка с добавками свинца, олова и железа) раньше применялся для изготовления столовых приборов и украшений "под серебро". Благодаря своей высокой коррозийной стойкости и прочности, хорошей пластичности сейчас применяется в химической, судостроительной, медицинской, нефтяной, текстильной и др. отраслях промышленности. А вот константан, манганин, хромель и копель почти не изменяют своего сопротивления при значительных колебаниях температуры и поэтому верой и правдой служат в электротехнике для изготовления термопар – очень чувствительных приборов, измеряющих температуру. Также из хромеля и копеля изготавливаются компенсационные провода, реостаты, детали нагревательных устройств. Из мангонина изготовляют эталонные резисторы и элементы измерительных приборов.

    Работа может использоваться для проведения уроков и докладов по предмету "Химия"

    Готовые презентации по химии включают в себя слайды, которые учителя могут использовать на уроках химии для для изучения химических свойств веществ в интерактивной форме. Представленные презентации по химии помогут учителям в учебном процессе. На нашем сайте Вы можете скачать готовые презентации по химии для 7,8,9,10,11 класса.

    Общие сведенияМедь - элемент одиннадцатой группы четвёртого
    периода периодической системы химических элементов
    Д. И. Менделеева, с атомным номером 29. Обозначается
    символом Cu. Простое вещество медь - это пластичный
    переходный металл золотисто-розового цвета.
    Общие
    сведения

    Происхождения названия

    Латинское название меди Cuprum (древн. Aes
    cuprium, Aes cyprium) произошло от названия
    острова Кипр.
    У Страбона (древнегреческий историк и философ)
    медь именуется халкосом, от названия города
    Халкиды на Эвбее. От этого слова произошли
    многие древнегреческие названия медных и
    бронзовых предметов.

    Нахождение в природе

    Нахождение в природе. Медь встречается в природе как в
    соединениях, так и в самородном виде. Нередко
    встречаются месторождения меди в осадочных породах
    - медистые песчаники и сланцы. Содержание меди в
    руде составляет от 0,3 до 1,0 %.
    Нахождение в
    природе

    Физические свойства меди

    Медь - золотисто-розовый пластичный металл, на
    воздухе быстро покрывается оксидной плёнкой. Медь
    обладает высокой тепло и электропроводностью,
    занимает второе место по электропроводности после
    серебра.
    Физические
    свойства
    меди

    Биологическая роль меди

    является компонентом многих ферментов
    участвует в метаболизме железа
    повышает усвоение белков и углеводов
    принимает участие в обеспечении тканей кислородом
    участвует в формировании соединительной ткани, росте костей
    поддерживает структуру костей, хрящей, сухожилий
    Биологическая
    роль меди
    поддерживает эластичность стенок кровеносных сосудов,
    альвеол, кожи
    участвует в образовании гемоглобина и созревании эритроцитов

    Промышленные и лабораторные способы получения меди

    1. Пирометаллургический метод
    Промышленные
    и лабораторные
    способы
    получения меди
    2. Гидрометаллургический метод

    Химические свойства меди

    Взаимодействие с неметаллами
    С кислородом в зависимости от температуры взаимодействия
    медь образует два оксида:
    при 400–500°С образуется оксид двухвалентной меди:
    2Cu + O2 = 2CuO;
    Химические
    свойства
    меди
    при температуре выше 1000°С получается оксид меди (I):
    4Cu + O2 = 2Cu2O.
    Аналогично реагирует с серой:
    при 400°С образуется сульфид меди (II):
    Cu + S = CuS;
    при температуры выше 400°С получается сульфид меди (I):
    2Cu + S = Cu2S.

    Химические свойства меди

    При нагревании с фтором, хлором, бромом образуются
    галогениды меди (II):
    Cu + Br2 = CuBr2;
    с йодом – образуется йодид меди (I):
    2Cu + I2 = 2CuI.
    Химические
    свойства
    меди
    Медь не реагирует с водородом, азотом, углеродом
    и кремнием.

    Химические свойства меди. Взаимодействие с кислотами

    В электрохимическом ряду напряжений металлов медь
    расположена после водорода, поэтому она не взаимодействует с
    растворами разбавленной соляной и серной кислот и щелочей.
    Химические
    свойства меди.
    Взаимодействие
    с кислотами
    Растворяется в разбавленной азотной кислоте с образованием
    нитрата меди (II) и оксида азота (II):
    3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + 4H2O.
    Реагирует с концентрированными растворами серной и азотной
    кислот с образованием солей меди (II) и продуктов восстановления
    кислот:
    Cu + 2H2SO4 = CuSO4 + SO2 + 2H2O;
    Cu + 4HNO3 = Cu(NO3)2 + 2NO2 + 2H2O.
    С концентрированной соляной кислотой медь реагирует с
    образованием трихлорокупрата (II) водорода:
    Cu + 3HCl = H + H2.

    Химические свойства меди. Взаимодействие с аммиаком

    Медь растворяется в водном растворе аммиака в присутствии
    кислорода воздуха с образованием гидроксида тетраамминмеди
    (II):
    2Cu + 8NH3 + 2H2O + O2 = 2(OH)2.
    Химические
    свойства меди.
    Взаимодействие
    с аммиаком

    Химические свойства меди. Восстановительные свойства

    Медь окисляется оксидом азота (IV) и хлоридом
    железа (III):
    2Cu + NO2 = Cu2O + NO;
    Cu + 2FeCl3 = CuCl2 + 2FeCl2.
    Химические
    свойства меди.
    Восстановительные
    свойства

    Применение меди

    Из-за низкого удельного сопротивления медь широко
    применяется в электротехнике для изготовления силовых и
    других кабелей, проводов или других проводников.
    Применение
    меди
    В связи с высокой механической прочностью и пригодностью
    для механической обработки медные бесшовные трубы
    круглого сечения получили широкое применение для
    транспортировки жидкостей и газов
    В ювелирном деле часто используются сплавы меди с золотом
    для увеличения прочности изделий к деформациям и
    истиранию, так как чистое золото - очень мягкий металл и
    нестойко к механическим воздействиям.
    Медь - самый широко употребляемый катализатор
    полимеризации ацетилена

    Гидроксид меди - Cu(OH)2, - уверенно заявил Шелдон,
    взбалтывая первую пробирку. - А во второй - розовое
    масло. Бугагашеньки!
    Похожие статьи