• Световые явления в физике. Световые явления. Образование тени и полутени

    31.01.2024

    Радуга; тень, отбрасываемая предметом; голубое небо; многоцветье окружающего нас мира - вот лишь несколько примеров световых явлений. Эти явления изучаются в разделе физики, который называется "оптика" (от греч. optike - наука о зрительных восприятиях).

    Источники света вам хорошо знакомы. Их можно разделить на естественные (Солнце, звезды) и искусственные (электрические лампы).

    Важное свойство света - прямолинейность его распространения. Только при этом условии возможно образование тени и возникновение затмений Солнца и Луны.

    Лучи света отражаются от преград. Если лучи падают на зеркало, они отражаются так, что мы видим в зеркале предмет в натуральную величину. Если лучи света падают на неровную поверхность, они отражаются во все стороны и делают эту поверхность освещенной. Именно поэтому мы можем видеть предметы, которые сами не светятся (в том числе и такие небесные тела, как планеты и их спутники).

    Когда лучи света попадают из воздуха в какую-то другую прозрачную среду (воду, стекло), они преломляются (посмотрите сбоку на ложку в стакане с водой и увидите, что на границе раздела воздух - вода происходит "перелом" ложки).

    Если белый свет падает на трехгранную стеклянную призму, он преломляется и одновременно раскладывается на семь цветов. В этом заключается явление дисперсии. Цвета всегда расположены в определенном порядке: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. (Галочка, можно сделать слова цветными?) Такая цветная полоса называется спектром. Последовательность цветов в спектре можно запомнить с помощью простой фразы: "Каждый охотник желает знать, где сидит фазан". Дисперсия наблюдается и в природе. Вспомните радугу. Она получается из-за того, что солнечный свет преломляется в каплях дождя, как в призмах.

    Но что такое свет? Ученым потребовалось много времени, чтобы найти ответ на этот вопрос. И ответ оказался неожиданным. Дело в том, что в одних явлениях свет ведет себя как поток частиц (их называют квантами света, или фотонами), в других - как волна. Например, радужная окраска CD-ROM дисков возникает потому, что свет проявляет волновые свойства, а отклонение кометных хвостов от Солнца объясняется световым давлением, связанным с представлением о свете как потоке частиц.

    Невозможно переоценить значение света для познания окружающего нас мира. Ведь наибольшую часть информации о нем мы получаем благодаря именно свету. Исследование света, идущего к нам от небесных тел, позволяет очень многое узнать о них. Здесь особенно важную роль играют спектры небесных тел. Это своего рода их "паспорта", расшифровывая которые астрономы добывают информацию о температуре, химическом составе небесных тел, скоростях, с которыми они движутся, приближаясь к нам или удаляясь от нас, и о многом другом. В повседневной жизни мы встречаемся с разными оптическими приборами - от очков до телескопов. Их, конечно, не смогли бы создать без исследования световых явлений.

    Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

    • Участник:Максимова Анна Алексеевна
    • Руководитель:Гусарова Ирина Викторовна

    Цель работы – изучить световые явления и свойства света на опытах, рассмотреть три основных свойства света: прямолинейность распространения, отражение и преломление света в разных по плотности средах.

    Задачи:

    1. Подготовить оборудование.
    2. Провести необходимые опыты.
    3. Проанализировать и оформить результаты.
    4. Сделать вывод.

    Актуальность

    В повседневной жизни мы постоянно сталкиваемся со световыми явлениями и их различными свойствами, работа многих современных механизмов и приборов также связана со свойствами света. Световые явления стали неотъемлемой частью жизни людей, поэтому их изучение актуально.

    Приведённые ниже опыты объясняют такие свойства света, как прямолинейность распространения, отражение и преломление света.

    Для провидения и описания опытов использовано 13-е стереотипное издание учебника А. В. Перышкина «Физика. 8 класс.» (Дрофа, 2010)

    Техника безопасности

    Электрические приборы, задействованные в опыте, полностью исправны, напряжение на них не превышает 1.5 В.

    Оборудование устойчиво размещено на столе, рабочий порядок соблюдён.

    По окончанию проведения опытов электрические приборы выключены, оборудование убрано.

    Опыт 1. Прямолинейное распространение света. (стр. 149, рис. 120), (стр.149, рис. 121)

    Цель опыта – доказать прямолинейность распространения световых лучей в пространстве на наглядном примере.

    Прямолинейное распространение света – его свойство, с которым мы встречаемся наиболее часто. При прямолинейном распространении энергия от источника света направляется к любому предмету по прямым линиям (световым лучам), не огибая его. Этим явлением можно объяснить существование теней. Но кроме теней существуют еще и полутени, частично освещённые области. Чтобы увидеть, при каких условиях образуются тени и полутени и как при этом распространяется свет, проведём опыт.

    Оборудование: непрозрачная сфера (на нити), лист бумаги, точечный источник света (карманный фонарь), непрозрачная сфера (на нити) меньше размером, для которой источник света не будет являться точечным, лист бумаги, штатив для закрепления сфер.

    Ход опыта

    Образование тени
    1. Расположим предметы в порядке карманный фонарь-первая сфера (закреплённая на штативе)-лист.
    2. Получим тень, отображённую на листе.

    Мы видим, что результатом эксперимента стала равномерная тень. Предположим, что свет распространялся прямолинейно, тогда образование тени можно легко объяснить: свет, идущий от точечного источника по световому лучу, касающийся крайних точек сферы продолжил идти по прямой линии и за сферой, из-за чего на листе пространство за сферой не освещено.

    Предположим, что свет распространялся по кривым линиям. В этом случае лучи света, искривляясь, попали бы и за сферу. Тени бы мы не увидели, но в результате проведения опыта тень появилась.

    Теперь рассмотрим случай, при котором образуется полутень.

    Образование тени и полутени
    1. Расположим предметы в порядке карманный фонарь-вторая сфера (закреплённая на штативе)-лист.
    2. Осветим сферу карманным фонарём.
    3. Получим тень, а также и полутень, отображённые на листе.

    В этот раз результаты эксперимента – тень и полутень. Как образовалась тень уже известно из примера выше. Теперь, чтобы показать, что образование полутени не противоречит гипотезе о прямолинейном распространении света, необходимо пояснить это явление.
    В этом опыте мы взяли источник света, не являющийся точечным, то есть состоящий из множества точек, по отношению к сфере, каждая из которых испускает свет во всех направлениях. Рассмотрим самую верхнюю точку источника света и световой луч, исходящий из неё к самой нижней точке сферы. Если пронаблюдать за движением луча за сферой до листа, то мы заметим, что он попадает на границу света и полутени. Лучи из подобных точек, идущие в таком направлении (от точки источника света к противоположной точке освещаемого предмета) и создают полутень. Но если рассматривать направление светового луча из выше обозначенной точки к верхней точке сферы, то будет отлично видно, как луч попадает в область полутени.

    Из этого опыта мы видим, что образование полутени не противоречит прямолинейному распространению света.

    Вывод

    С помощью этого опыта я доказала, что свет распространяется прямолинейно, образование тени и полутени доказывает прямолинейность его распространения.

    Явление в жизни

    Прямолинейность распространения света широко применяется на практике. Самым простым примером является обыкновенный фонарь. Также это свойство света используется во всех устройствах, в составе которых есть лазеры: лазерные дальномеры, приспособления для резки металла, лазерные указки.

    В природе свойство встречается повсеместно. Например, свет, проникающий через просветы в кроне дерева, образует хорошо различимую прямую линию, проходящую сквозь тень. Конечно, если говорить о больших масштабах, стоит упомянуть о солнечном затмении, когда луна отбрасывает тень на землю, из-за чего солнце с земли (естественно, речь идет о затененном ее участке) не видно. Если бы свет распространялся не прямолинейно, этого необычного явления не существовало бы.

    Опыт 2. Закон отражения света. (с.154, рис. 129)

    Цель опыта – доказать, что угол падения луча равен углу его отражения.

    Отражение света также является важнейшим его свойством. Именно благодаря отражённому свету, который улавливается человеческим глазом, мы можем видеть какие-либо объекты.

    По закону отражения света, лучи, падающий и отражённый, лежат в одной плоскости с перпендикуляром, проведённым к границе раздела двух сред в точке падения луча; угол падения равен углу отражения. Проверим, равны ли данные углы, на опыте, где в качестве отражающей поверхности возьмём плоское зеркало.

    Оборудование: специальный прибор, представляющий собой диск с нанесённой круговой шкалой, укреплённый на подставке, в центре диска находится небольшое плоское зеркало, расположенное горизонтально (такой прибор можно изготовить в домашних условиях, используя вместо диска с круговой шкалой транспортир.), источник света – осветитель, прикреплённый к краю диска или лазерная указка, лист для нанесения измерений.

    Ход опыта

    1. Расположим лист за прибором.
    2. Включим осветитель, направляя его на центр зеркала.
    3. Проведем перпендикуляр к зеркалу в точку падения луча на листе.
    4. Измерим угол падения (ﮮα).
    5. Измерим полученный угол отражения (ﮮβ).
    6. Запишем результаты.
    7. Изменим угол падения, передвигая осветитель, повторим пункты 4, 5 и 6.
    8. Сравним результаты (величину угла падения с величиной угла отражения в каждом случае).

    Результаты опыта в первом случае:

    ∠α = 50°

    ∠β = 50°

    ∠α = ∠β

    Во втором случае:

    ∠α = 25°

    ∠β = 25°

    ∠α = ∠β

    Из опыта видно, что угол падения светового луча равен углу его отражения. Свет, попадая на зеркальную поверхность, отражается от неё под тем же углом.

    Вывод

    С помощью опыта и проведённых измерений я доказала, что при отражении света угол его падения равен углу отражения.

    Явление в жизни

    С этим явлением мы встречаемся повсеместно, так как воспринимаем глазом отражённый от предметов свет. Ярким видимым примером в природе могут служить блики яркого отражённого света на воде и на других поверхностях с хорошей отражательной способностью (поверхность поглощает меньше света чем отражает). Также, следует вспомнить солнечные зайчики, которые может пускать с помощью зеркала каждый ребёнок. Они не что иное, как отражённый от зеркала луч света.

    Человек использует закон отражения света в таких приборах, как перископ, зеркальный отражатель света (к примеру, отражатель на велосипедах).

    Кстати, с помощью отражения света от зеркала фокусники создавали многие иллюзии, например, иллюзию «Летающая голова». Человек помещался в ящик среди декораций так, что из ящика была видна только его голова. Стенки ящика закрывали наклонённые к декорациям зеркала, отражение от которых не давало увидеть ящик и казалось, что под головой ничего нет и она висит в воздухе. Зрелище необычное и пугающее. Фокусы с отражением имели место и в театрах, когда на сцене нужно было показать призрака. Зеркала «затуманивали» и наклоняли так, чтобы отражённый свет из ниши за сценой был виден в зрительном зале. В нише уже появлялся актёр, играющий призрака.

    Опыт 3. Преломление света. (стр. 159, рис. 139)

    Цель опыта - доказать, что отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред; доказать, что угол падения светового луча (≠ 0°), идущего из менее плотной среды в более плотную, больше угла его преломления.

    В жизни мы часто встречаемся с преломлением света. Например, кладя в прозрачный стакан с водой совершенно прямую ложку мы видим, что её изображение изгибается на границе двух сред (воздуха и воды), хотя на самом деле ложка остаётся прямой.

    Чтобы получше рассмотреть это явление, понять, почему оно происходит и доказать закон преломления света (лучи, падающий и преломлённый, лежат в одной плоскости с перпендикуляром, проведённым к границе раздела двух сред в точке падения луча; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред) на примере, проведём опыт.

    Оборудование: две среды разной плотности (воздух, вода), прозрачная тара для воды, источник света (лазерная указка), лист бумаги.

    Ход опыта

    1. Нальём воду в тару, за ней на некотором расстоянии разместим лист.
    2. Направим луч света в воду под углом, ≠ 0°, так как при 0° преломления не происходит, а луч переходит в другую среду без изменений.
    3. Проведем перпендикуляр к границе раздела двух сред в точке падения луча.
    4. Измерим угол падения светового луча (∠α ).
    5. Измерим угол преломления светового луча (∠β ).
    6. Сравним углы, составим отношение их синусов (для нахождения синусов можно воспользоваться таблицей Брадиса).
    7. Запишем результаты.
    8. Изменим угол падения, передвигая источник света, повторим пункты 4-7.
    9. Сравним значения отношений синусов в обоих случаях.

    Предположим, что световые лучи, проходя через среды разной плотности, испытывали преломление. При этом углы падения и преломления не могут быть равны, а отношения синусов этих углов не равны одному. Если преломления не произошло, то есть свет перешёл из одной среды в другую, не меняя своё направление, то данные углы будут равными (отношение синусов равных углов равно одному). Чтобы подтвердить или опровергнуть предположение, рассмотрим результаты опыта.

    Результаты опыта в первом случае:

    ∠α = 20

    ∠β = 15

    ∠α >∠β

    sin∠α = 0,34 = 1,30

    sin∠β 0,26

    Результаты опыта во втором случае:

    ∠α ˈ= 50

    ∠β ˈ= 35

    ∠α ˈ > ∠β ˈ

    sin∠α ˈ= 0,77 = 1,35

    sin∠β ˈ 0,57

    Сравнение отношений синусов:

    1,30 ~1,35 (из-за погрешностей в измерениях)

    sin∠α = sin∠α ˈ = 1,3

    sin∠β sin∠β ˈ

    По результатам опыта при преломлении света, идущего из менее плотной среды в более плотную, угол падения больше угла преломления. отношения синусов падающих и преломлённых углов равны (но не равны одному), то есть являются постоянной величиной для двух данных сред. Направление луча при попадании в среду другой плотности изменяется из-за изменения скорости света в среде. В более плотной среде (здесь - в воде) свет распространяется медленнее, поэтому и изменяется угол прохождения света сквозь пространство.

    Вывод

    С помощью проведённого опыта и измерений я доказала, что при преломлении света отношение синуса угла падения к синусу угла преломления – величина постоянная для обоих сред, при прохождении световых лучей из менее плотной среды в более плотную, угол падения меньше угла преломления.

    Явление в жизни

    С преломлением света мы также встречаемся довольно часто, можно привести множество примеров искажения видимого изображения при прохождении сквозь воду и другие среды. Наиболее интересный пример – возникновение миража в пустыне. Мираж происходит при преломлении световых лучей, проходящих из теплых слоёв воздуха (менее плотных) в холодные слои, что нередко можно наблюдать в пустынях.

    Человеком преломление света используется в различных устройствах, содержащих линзы (свет преломляется при прохождении сквозь линзу). Например, в оптических приборах, таких как бинокль, микроскоп, телескоп, в фотоаппаратах. Также человек изменяет направление света с помощью его прохождения сквозь призму, где свет преломляется несколько раз, входя и выходя из неё.

    Цели работы достигнуты.

    Сложно переоценить. От него зависит вся человеческая деятельность от начальных периодов до наших дней. Для световых потоков находящаяся в постоянном движении атмосфера Земли - это своеобразная оптическая система, в которой постоянно меняются параметры.

    Примеры световых явлений в атмосфере

    Слои газовой оболочки нашей планеты перемешиваются, меняя свою плотность, прозрачность, в них отражается часть света, освещая земную поверхность. В определенных случаях ход лучей искривляется, создавая самые удивительные и красочные явления в атмосфере. Некоторые из них встречаются очень часто, а другие недостаточно известны людям.

    Нашему глазу доступны не все физические явления. Световые картины звездного шлейфа, например, можно обнаружить только при помощи камеры с большой выдержкой, которая запечатлевает, как звезды оставляют в небе уникальные следы при вращении земли вокруг оси. Поэтому часто применяются специальные оптические устройства.

    Удивительными по красоте и доступными для наблюдения являются природные атмосферные явления, являющиеся взаимодействием игры света и газовой оболочки нашей планеты. Чаще всего они возникают из-за рассеивания лучей, их преломления и дифракции, когда они огибают границы непрозрачных тел. В статье рассмотрим уникальные примеры световых явлений, возникающих в атмосфере.

    Радуга

    В древности ее считали мостом, соединяющим землю и небо. Философ Декарт обосновал теорию возникновения радуги, основанную на преломлении световых лучей. Однако ни он, ни Ньютон, дополнивший знания, не смогли объяснить происхождение нескольких таких явлений, одновременно наблюдаемых в небе. И только в XIX веке астроном Эри смог дать объяснение этому феномену: завеса дождя им рассматривалась как структура, при которой возникала дифракция света. Его теория актуальна и до сегодняшнего дня. Радуга наблюдается при освещении солнечными лучами пелены дождя, находящейся на стороне неба, противоположной светилу. Часто взглядам восхищенного зрителя предстает не одна, а несколько радуг, но расположение цветов в них всегда одинаково.

    Такие световые явления в живой природе наблюдаются не только при дымке дождя, но и на каплях воды фонтанов, а источником света служат луна, солнце и обыкновенный прожектор. Интересно, что ученые, задавшиеся целью воспроизвести явление в искусственных условиях, получали около девятнадцати изображений.

    Обычную радугу видели, несомненно, все, а вот ночная считается редким природным явлением. В лунном свете она кажется белой, но как только капли дождя становятся крупнее, сразу превращается в цветную. Такой феномен еще часто наблюдается над падающими водопадами.

    Огненная радуга

    Ученые относят ее к редчайшему Она появляется при особом расположении солнца над линией горизонта на фоне состоящих из кристаллов льда, чьи грани находятся параллельно земле. Только при таких условиях свет проходит в вертикальную грань, преломляется и выходит в горизонтальную. И тогда нашим изумленным взорам предстают облачка, напоминающие разноцветный полыхающий огонь, небо словно покрывается радужной пленкой.

    Световой столб

    В древности часто принимали за мистические предзнаменования созданные солнцем световые явления. Физика же объясняет такие столбы игрой солнечных лучей с кристалликами льда, образованными в верхних У природного явления всегда будет цвет источника света, а им может оказаться солнце, луна или любой фонарь. Но если они образованы природными светилами, то такие колонны оказываются намного длиннее.

    Звуковые и световые явления сопровождают появление полярного сияния, ведь к ярким вспышкам присоединяются шумы и трески, которые влияют на радиопередатчики, вследствие чего связь прерывается или полностью прекращается.

    В заключение

    Физическая природа световых явлений становилась предметом исследования людей с древних времен. Оптические эффекты, возникающие в атмосферных слоях земли, рассмотрены и обоснованы с научной точки зрения. Примеры световых явлений в физике, приведенные в обзоре, да и не только они, неоднократно становились настоящим потрясением для человека, однако, даже самые сложные и причудливые картины сейчас находят свое объяснение. А многие явления были повторены в искусственных условиях. Игра света издавна привлекала и еще долгое время будет предметом восхищения других поколений, наблюдающих, как солнечный луч или лунное сияние придают нашей планете неповторимый вид.

    Атмосферные оптические явления поражают воображение красотой и многообразием создаваемых иллюзий. Наиболее эффектными являются столбы света, ложные солнца, огненные кресты, глория и брокенский призрак, которые часто люди незнающие принимают за Чудо или Богоявление.

    Окологоризонтальная дуга, или "огненная радуга". Свет проходит через кристаллы льда в перистых облаках. Очень редкое явление, так как и кристаллы льда, и солнечный свет должны оказаться под определенным углом друг к другу, чтобы создать эффект "огненной радуги".

    "Призрак Броккена". Своё название явление получило по имени вершины Броккен в Германии, где можно регулярно наблюдать этот эффект: человек, стоящий на холме или горе, за спиной которого восходит или заходит солнце, обнаруживает, что его тень, упавшая на облака, становится неправдоподобно огромной. Это происходит из-за того, что мельчайшие капли тумана особым образом преломляют и отражают солнечный свет.

    Околозенитная дуга. Дуга с центром в точке зенита, расположенная выше Солнца приблизительно на 46°. Она видна редко и только в течение нескольких минут, имеет яркие цвета, четкие очертания и всегда параллельна горизонту. Стороннему наблюдателю она напомнит улыбку Чеширского Кота или перевернутую радугу.

    "Туманная" радуга. Туманный ореол похож на бесцветную радугу. Туман, рождающий этот ореол, состоит из более мелких частиц воды, и свет, преломляясь в крошечных капельках, не расцвечивает его.

    Глория. Наблюдать этот эффект можно только на облаках, которые находятся прямо перед зрителем или ниже его, в точке, которая находится на противоположной стороне к источнику света. Таким образом, увидеть Глорию можно только с горы или из самолета, причем источники света (Солнце или Луна) должны находиться прямо за спиной наблюдателя.

    Гало в 22º. Белые световые окружности вокруг Солнца или Луны, которые возникают в результате преломления или отражения света находящимися в атмосфере кристаллами льда или снега, называются гало. В холодное время года гало, образованные кристаллами льда и снега на поверхности земли, отражают солнечный свет и рассеивают его в разных направлениях, образуя эффект под названием "бриллиантовая пыль".

    Радужные облака. Когда Солнце располагается под определенным углом к капелькам воды, из которых состоит облако, эти капли преломляют солнечный свет и создают необычный эффект "радужного облака", окрашивая его во все цвета радуги.

    Лунная радуга (ночная радуга) - радуга, порождаемая луной в большей степени, чем солнцем. Лунная радуга сравнительно более бледная, чем обычная. Это объясняется тем, что луна производит меньше света, чем солнце. Лунная радуга всегда находится на противоположной от луны стороне неба.

    Паргелий - одна из форм гало, при которой на небе наблюдается одно или несколько дополнительных изображений Солнца.
    В «Слове о полку Игореве» упоминается, что перед наступлением половцев и пленением Игоря «четыре солнца засияли над русской землей». Воины восприняли это как знак надвигающейся большой беды.

    Северное (Полярное) сияние - свечение верхних слоёв атмосфер планет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра.

    Огни святого Эльма - разряд в форме светящихся пучков или кисточек, возникающих на острых концах высоких предметов (башни, мачты, одиноко стоящие деревья, острые вершины скал и т. п.) при большой напряжённости электрического поля в атмосфере.

    Зодиакальный свет. Рассеянное свечение ночного неба, создаваемого солнечным светом, отраженным от частиц межпланетной пыли, называют еще зодиакальным светом. Зодиакальный свет можно наблюдать вечером на западе или утром на востоке.

    Столбы света. Плоские кристаллы льда отражают свет в верхних слоях атмосферы и образуют вертикальные столбы света, словно выходящие из земной поверхности. Источниками света могут являться Луна, Солнце или огни искусственного происхождения.

    Звездный след. Невидим невооруженным глазом, его можно запечатлеть на фотокамеру.

    Белая радуга. Фото сделано на мосту Золотые Ворота в Сан-Франциско

    Свет Будды. Явление схоже с Призраком Броккена. Солнечные лучи отражаются от атмосферных капелек воды над морем и тень самолёта посреди радужного круга...

    Зелёный луч. "Когда заходящее Солнце полностью скрывается из виду, последний проблеск выглядит поразительно зеленым. Эффект можно наблюдать только из мест, где горизонт низок и далек. Он продолжается всего несколько секунд."

    Мираж, давно всем известное природное явление...

    Лунная Радуга - это довольно редкое явление в атмосфере Земли и появляется только при полной Луне. Для возникновения лунной радуги необходимо: полная Луна, не закрытая облаками, и выпадение ливневого дождя. Настоящая лунная радуга имеет размер в половину небосвода.

    Тень горы, наблюдаемая на фоне вечерних облаков:

    Реферат

    На тему: Световые явления

    Выполнил: Храпатов Д. А.

    Проверил(а):

    1. Свет. Источники света

    2. Распространение света

    3. Отражение света

    4. Плоское зеркало

    5. Зеркальное и рассеянное изображение

    6. Преломление света

    8. Изображения, даваемые линзой


    Свет. Источники света

    Свет… его значение в нашей жизни очень велико. Трудно представить себе жизнь без света. Ведь все живое зарождается и развивается под влиянием света и тепла.

    Деятельность человека в начальные периоды его существования – добывание пищи, защита от врагов, охота – была зависима от дневного света. Потом человек научился добывать и поддерживать огонь, стал освещать свое жилище, охотиться с факелами. Но во всех случаях его деятельность не могла протекать без освещения.

    Свет, посылаемый небесными телами, позволил определить расположение и движение Солнца, звезд, планет, Луны и других спутников. Исследования световых явлений помогло создать приборы, при помощи которых узнали о строении и даже составе небесных тел, находящихся от Земли на расстоянии многих миллиардов километров. По наблюдениям в телескоп и фотографиям планет изучили их облачный покров, особенности поверхностей, скорости вращения. Можно сказать, что наука астрономия возникла и развивалась благодаря свету и зрению.

    На изучении света основано создание искусственного освещения, так необходимого человеку. Свет нужен везде: безопасность движения транспорта связана с применением фар, освещением дорог; в военной технике применяются осветительные ракеты, прожекторы; нормальное освещение рабочего места способствует повышению производительности труда; солнечный свет повышает сопротивляемость организма болезням, улучшает настроение человека.

    Что же такое свет? Почему и как мы его воспринимаем?

    Раздел науки, посвященный изучению света, называют также оптикой (от греческого optos – видимый, зримый).

    Световое (оптическое) излучение создается источниками света.

    Существуют естественные и искусственные источники света. К естественным источникам света относятся такие, как Солнце, звезды, полярное сияние, молнии; к искусственным – лампы, свечи, телевизор и другие.

    Источник света мы видим потому, что создаваемое имя излучение попадает к нам в глаза. Но мы видим также и тела, не являющиеся источниками света, - деревья, дома, стены комнаты, Луну, планеты и т.п. Однако мы их видим только тогда, когда они освещены источниками света. Излучение, идущее от источников света, упав на поверхность предметов, меняет свое направление и попадает в глаза.

    2. Распространение света

    Оптика – одна из древнейших наук.

    Еще задолго до того, как узнали, что представляет собой свет, некоторые его свойства были обнаружены и использованы в практике.

    На основе наблюдений и опытов были установлены законы распространения света, при этом использовалось понятие луча света.

    ЛУЧ – эта линия, вдоль которой распространяется свет.

    Закон прямолинейного распространения света.

    Свет в прозрачной однородной среде распространяется по прямым линиям.

    Для данного закона можно рассмотреть пример – образования тени:

    Если мы хотим, чтобы свет от лампы не попадал нам в глаза, мы можем загородиться от него рукой или надеть на лампу абажур. Если бы свет распространялся не по прямым линиям, то он бы мог обогнуть края препятствия и попасть нам в глаза. Например, от звука нельзя «загородиться» рукой, он обогнет это препятствие и мы будем его слышать.

    Рассмотрим это явление на опыте.

    Возьмем лампочку от карманного фонаря. Расположим на некотором расстоянии от нее экран. Лампа освещает экран полностью. Поместим между лампочкой и экраном непрозрачное тело (например металлический шар). Теперь на экране появится темный круг, так как за шаром образовалась тень – пространство, в которое не попадает свет от источника.

    Но четко описанную тень, которая получена в описанном опыте, мы видим в жизни не всегда. Если размеры источника света будут гораздо больше, то вокруг тени образуется полутень. Если бы наш глаз находился в области тени, то мы не увидели бы источник света, а из области полутени – видели бы один из его краев. Закон распространения света использовали еще древние египтяне для того, чтобы установить по прямой линии колоны, столбы, стены. Они располагали колоны таким образом, чтобы из-за ближайшей к глазу колоны не были видны все остальные.

    3. Отражение света

    Направим от источника света на экран пучок света. Экран будет освещен, но между источником и экраном мы ничего не увидим. Если же между источником и экраном поместить листок бумаги, то он будет виден. Происходит это потому, что излучение, достигнув поверхности листка, отражается, изменяет свое направление и попадает в наши глаза. Весь пучок света становится видимым, если запылить воздух между экраном и источником света. В этом случае пылинки отражают свет и направляют его в глаза наблюдателя.

    Закон отражения света:

    Лучи падающий и отраженный лежат в одной плоскости с перпендикуляром к отражающей поверхности, восставленным в точке падения луча.

    Пусть прямая MN – поверхность зеркала, АО – падающий и ОВ – отраженный лучи, ОС – перпендикуляр к поверхности зеркала в точке падения луча.

    Угол, образованный падающим лучом АО и перпендикуляром ОС (тюею угол АОС), называют углом падения. Обозначают его буквой α(«альфа»). Угол, образованный отраженным лучом ОВ и те же перпендикуляром ОС (т.е. угол СОВ), называют углом отражения, его обозначают буквой β («бета»).

    Передвигая источник света по краю диска, мы изменяем угол падения луча. Повторим опыт, но теперь будем каждый раз отмечать угол падения и соответствующий ему угол отражения.

    Наблюдения и измерения показывают, что при всех значениях угла падения сохраняется равенство между ним и углом отражения.

    Итак, второй закон отражения света гласит: угол отражения равен углу падения.

    4. Плоское зеркало

    Зеркало, поверхность которого представляет собой плоскость, называется плоским зеркалом.

    Когда предмет находится перед зеркалом, то кажется, что за зеркалом находится такой же предмет, то что мы видим за зеркалом, называется изображением предмета.

    Для начала, объясним, кК глаз воспринимает сам предмет, например, свечу. От каждой точки сечи во все стороны расходятся лучи света. Часть из них расходящимся пучком попадает в глаз. Глаз видит (воспринимает) точку в том месте, откуда исходят лучи, т.е. в месте их пересечения, где не самом деле находится точка.

    Глядя в зеркало, мы видим мнимое изображение своего лица.

    Расположим вертикально кусок плоского стекла – он будет служить зеркалом. Но так как стекло прозрачно, мы увидим и то, что находится за ним. Поставим перед стеклом зажженную свечу. В стекле мы увидим ее изображение. По другую сторону стекла (там, где мы видим изображение) поставим такую же, но незажженную свечу и будем передвигать ее до тех пор, пока она не покажется зажженной. Это будет означать, что изображение зажженной свечи находится там, где стоит незажженная свеча.

    Измерим расстояние от свечи до стекла и от стекла до изображения свечи. Эти расстояния окажутся одинаковыми.

    Опыт также показывает, что высота изображения свечи равна высоте самой свечи, т.е. размеры изображения в плоском зеркале равны размерам предмета.

    Итак, опыт показывает, что изображение предмета в плоском зеркале имеет следующие особенности: это изображение мнимое, прямое, равное по размерам предмету, находится оно на таком же расстоянии за зеркалом, на каком предмет расположен перед зеркалом.

    У изображения в плоском зеркале есть еще одна особенность. Посмотрите на изображение вашей правой руки в плоском зеркале, пальцы на изображении расположены так, как будто это левая рука.

    5. Зеркальное и рассеянное изображение

    В плоском зеркале мы видим изображение, мало отличающееся от самого предмета. Это объясняется тем, что поверхность зеркала плоская и гладкая, и тем, что зеркало отражает большую часть падающего на него света (от 70 до 90%).

    Зеркальная поверхность отражает падающий на нее пучок света направленно. Пусть, например, на зеркало падает пучок параллельных лучей от Солнца. Лучи отражаются также параллельным пучком.

    Всякая не зеркальная, т.е. шероховатая, негладкая поверхность рассеивает свет: отражает падающий на нее пучок параллельных лучей по всем направлениям. Объясняется это тем, что шероховатая поверхность состоит из большого числа очень маленьких плоских поверхностей, расположенных беспорядочно, под разными углами друг к другу. Каждая маленькая плоская поверхность отражает свет в определенном направлении. Но все вместе они направляют отраженные лучи в разные стороны, т.е. рассеивают свет по разным направлениям.

    6. Преломление света

    Ложка или карандаш, опущенная в стакан с водой, кажется переломленной на границе между водой и воздухом. Это можно объяснить только тем, что лучи света, идущие т ложки, имеют в воде другое направление, чем в воздухе.

    Изменение направления распространения света при его прохождении через границу двух сред называется преломлением света.

    При переходе луча из стекла (воды) в воздух угол преломления больше угла падения.

    Способность преломлять лучи у разных сред различна. Например, алмаз преломляет лучи света сильнее, чем вода или стекло.

    Если на поверхность алмаза луч света падает под углом 60*, то угол преломления луча равен примерно 21*. При таком же угле падения луча на поверхность воды угол преломления составляет около 30*.

    При переходе луча из одной среды в другую происходит преломление света по следующим положениям:

    1. лучи падающий и преломленный лежат в одной плоскости с перпендикуляром, проведенным в точке падения луча к плоскости раздела двух сред.

    2. в зависимости от того, из какой среды в какую переходит луч, угол преломления может быть меньше или больше угла падения.

    7. Линзы

    Отражение и преломление света используется для того, чтобы изменять направление лучей или, как говорят, управлять световыми пучками. На этом основано создание специальных оптическх приборов, таких как прожектор, лупа, микроскоп, фотоаппарат и другие. Главная часть большинства из них – линза.

    В оптике чаще всего используются сферические линзы. Такие линзы представляют собой тела, изготовленные из оптического или органического стекла, ограниченные двумя сферическими поверхностями.

    Линзы бывают различные, ограниченные с одной стороны сферической, а с другой плоской поверхностью, или вогнуто-выпуклые но наиболее часто применяемые это выпуклые и вогнутые.

    Выпуклая линза преобразует пучок параллельных лучей в сходящийся, собирает его в одну точку. Поэтому выпуклую линзу называют собирающей линзой.

    Вогнутая линза преобразует пучок параллельных лучей в расходящийся. Поэтому вогнутую линзу называют рассеивающей линзой.

    Мы рассмотрели линзы, ограниченные сферическими поверхностями с двух сторон. Но изготавливают и применяют также линзы, ограниченные с одной стороны сферической, а с другой плоской поверхностью, или вогнуто-выпуклые линзы. Однако, несмотря на это, линзы бывают либо собирающими, либо рассеивающими. Если средняя часть линзы толще, чем ее края, то она собирает лучи, а если тоньше, то рассеивает.

    8. Изображения, даваемые линзой

    При помощи линзы можно управлять световыми лучами. Однако при помощи линзы можно не только собирать и рассеивать лучи света, но и получать разнообразные изображения предметов. Именно благодаря этой способности линз они широко используются в практике. Так линза в кинокамере дает увеличение в сотни раз, а в фотоаппарате также линза дает уменьшенное изображение фотографируемого предмета.

    1. Если предмет находится между линзой и ее фокусом, то его изображение – увеличенное, мнимое, прямое, и расположено оно от линзы дальше чем предмет.

    Такое изображение получают, когда пользуются лупой при сборке часов, чтении мелкого текста и др.

    2. Если предмет находится между фокусом и двойным фокусом линзы, то линза дает его увеличенное, перевернутое, действительное изображение; оно расположено по другую сторону от линзы по отношению к предмету, за двойным фокусным расстоянием.

    Такое изображение используется в проекционном аппарате, в киноаппарате.

    3. Предмет находится за двойным расстоянием линзы.

    В этом случае линза дает уменьшенное, перевернутое, действительное изображение предмета, лежащее по другую сторону линзы между ее Фоксом и двойным фокусом.

    Такое изображение используют в фотоаппаратуре.

    Линза с более выпуклыми поверхностями преломляет лучи сильнее, чем линза с меньшей кривизной. Поэтому фокусное расстояние более выпуклой линзы меньше чем у менее выпуклой линзы. Линза, у которой короче фокусное расстояние, создает большее увеличение, чем длиннофокусная линза.

    Увеличение предмета будет тем больше, чем ближе к фокусу находится предмет. Поэтому при помощи линз можно получать изображения с большим и очень большим увеличением. Точно также, можно получать изображения с разным уменьшением.


    Литература

    1. Свет. Источники света.

    2. Близорукость и дальнозоркость. Очки.

    3. Свет. Под редакцией Н.А. Родина

    Похожие статьи